Skip to content

Electronics

Semiconductor devices, amplifiers, op-amps, and digital electronics

1. Semiconductor Fundamentals

Semiconductor Materials

Silicon and germanium have 4 valence electrons. Conductivity between conductors and insulators.

Doping

N-Type

• Doped with pentavalent (5 electrons)

• Donors: Phosphorus, Arsenic, Antimony

• Majority carriers: Electrons

• Minority carriers: Holes

P-Type

• Doped with trivalent (3 electrons)

• Acceptors: Boron, Gallium, Indium

• Majority carriers: Holes

• Minority carriers: Electrons

PN Junction

  • Depletion region: Area devoid of mobile carriers at junction
  • Barrier potential: Si ≈ 0.7V, Ge ≈ 0.3V
  • Forward bias: P to +, N to - (reduces barrier, current flows)
  • Reverse bias: P to -, N to + (increases barrier, minimal current)

2. Diodes

Diode Types

TypeFunctionApplication
RectifierAC to DC conversionPower supplies
ZenerVoltage regulation (reverse)Regulators, references
LEDLight emissionIndicators, displays
PhotodiodeLight detectionSensors, optocouplers
SchottkyFast switching (low Vf)High-frequency rectifiers
VaractorVariable capacitanceTuning circuits

Rectifier Circuits

Half-Wave Rectifier

Vdc = Vm/π = 0.318Vm

PIV = Vm

Ripple frequency = fin

Full-Wave (Bridge)

Vdc = 2Vm/π = 0.636Vm

PIV = Vm (per diode)

Ripple frequency = 2fin

Zener Diode

Operates in reverse breakdown for voltage regulation

Iz = (Vin - Vz)/Rs

Pz = Vz × Iz

Must stay within rated power: Pz < Pz,max

3. Bipolar Junction Transistors (BJT)

BJT Basics

Current-controlled device with three terminals: Base, Collector, Emitter. Types: NPN and PNP.

BJT Equations

IE = IC + IB

IC = βIB

IE = (β+1)IB

β = IC/IB (DC current gain)

α = IC/IE

α = β/(β+1), β = α/(1-α)

BJT Regions

RegionBE JunctionBC JunctionUse
CutoffReverseReverseSwitch OFF
ActiveForwardReverseAmplifier
SaturationForwardForwardSwitch ON

Amplifier Configurations

Common Emitter (CE)

  • • High voltage gain
  • • High current gain
  • • 180° phase inversion
  • • Most common

Common Base (CB)

  • • High voltage gain
  • • Current gain < 1
  • • No phase inversion
  • • High frequency

Common Collector (CC)

  • • Voltage gain ≈ 1
  • • High current gain
  • • No phase inversion
  • • Buffer/impedance matching

4. Field Effect Transistors (FET)

FET vs BJT

FETs are voltage-controlled devices with high input impedance. Terminals: Gate, Drain, Source.

JFET

ID = IDSS(1 - VGS/VP

IDSS = drain current at VGS = 0

VP = pinch-off voltage

N-channel: VGS ≤ 0 for operation

P-channel: VGS ≥ 0 for operation

MOSFET

Enhancement Mode

• Normally OFF

• Needs VGS > Vth to conduct

• Most common in digital

Depletion Mode

• Normally ON

• Conducts at VGS = 0

• Can be enhanced or depleted

Transconductance

gm = ΔID/ΔVGS = (2IDSS/|VP|)(1 - VGS/VP)

Measure of FET amplification capability

Units: Siemens (S) or mho

5. Operational Amplifiers

Ideal Op-Amp Characteristics

  • • Infinite open-loop gain (AOL)
  • • Infinite input impedance
  • • Zero output impedance
  • • Infinite bandwidth
  • • Zero offset voltage

Basic Configurations

Inverting Amplifier

Av = -Rf/Rin

Input at inverting (-) terminal

Output inverted from input

Non-Inverting Amplifier

Av = 1 + Rf/Rin

Input at non-inverting (+) terminal

Output in phase with input

Other Op-Amp Circuits

CircuitOutputApplication
Voltage FollowerVout = VinBuffer, impedance matching
Summing AmplifierVout = -Rf(V₁/R₁ + V₂/R₂)Audio mixing, DAC
Difference AmplifierVout = (Rf/R)(V₂ - V₁)Instrumentation
IntegratorVout = -1/(RC)∫VindtWaveform generation
DifferentiatorVout = -RC(dVin/dt)Edge detection
Comparator±VsatLevel detection

Practical Considerations

  • Slew Rate: Maximum rate of output change (V/μs)
  • Gain-Bandwidth Product (GBP): Av × BW = constant
  • Input Offset Voltage: V required at input to make output = 0
  • CMRR: Common Mode Rejection Ratio (dB)

6. Digital Electronics

Number Systems

Binary

Base 2

Digits: 0, 1

Octal

Base 8

Digits: 0-7

Decimal

Base 10

Digits: 0-9

Hexadecimal

Base 16

Digits: 0-9, A-F

Logic Gates

GateExpressionOutput = 1 when
ANDY = A·BAll inputs = 1
ORY = A+BAny input = 1
NOTY = A'Input = 0
NANDY = (A·B)'Any input = 0
NORY = (A+B)'All inputs = 0
XORY = A⊕BOdd number of 1s

Boolean Algebra Laws

A + 0 = A

A · 1 = A

A + A' = 1

A · A' = 0

(A')' = A (Double negation)

(A·B)' = A'+B' (De Morgan)

(A+B)' = A'·B' (De Morgan)

A+AB = A (Absorption)

Flip-Flops

SR Flip-Flop

S=1: Set (Q=1)

R=1: Reset (Q=0)

S=R=1: Invalid

JK Flip-Flop

J=K=1: Toggle

No invalid state

Most versatile

D Flip-Flop

Q follows D at clock

Data latch

Used in registers

T Flip-Flop

T=1: Toggle

T=0: Hold

Used in counters

7. Power Electronics

Power Semiconductor Devices

DeviceControlApplication
SCR (Thyristor)Gate triggered, latchingPhase control, rectifiers
TRIACBidirectional SCRAC power control, dimmers
IGBTGate voltage controlledInverters, motor drives
Power MOSFETGate voltage controlledSwitching supplies, high freq

SCR (Silicon Controlled Rectifier)

  • Turn ON: Gate pulse while anode positive
  • Turn OFF: Reduce anode current below holding current (IH)
  • Firing angle (α): Delay angle from zero crossing
  • Average voltage: Vdc = (Vm/π)(1 + cos α) for half-wave

DC-DC Converters

Buck (Step-down)

Vout = DVin

D = duty cycle

Vout < Vin

Boost (Step-up)

Vout = Vin/(1-D)

D = duty cycle

Vout > Vin

Buck-Boost

Vout = -DVin/(1-D)

Inverted output

Can step up or down

8. Sensors and Measurements

Common Sensors

Measured QuantitySensorPrinciple
TemperatureThermocouple, RTD, ThermistorEMF, resistance change
Strain/ForceStrain gaugeResistance change with strain
LightPhotodiode, LDR, PhototransistorPhotocurrent, resistance change
Position/SpeedEncoder, LVDT, Hall effectDigital pulses, voltage

ADC and DAC

ADC (Analog to Digital)

Resolution = VFS/2n

Types: Flash, SAR, Sigma-Delta

n = number of bits

DAC (Digital to Analog)

Vout = D × Vref/2n

Types: R-2R ladder, weighted

D = digital input value

Oscilloscope Measurements

  • Voltage: V = divisions × volts/div
  • Period: T = divisions × time/div
  • Frequency: f = 1/T
  • Phase: φ = (Δt/T) × 360°

Key Takeaways for EE Board Exam

Must-Know Formulas

  • ✓ Si barrier: 0.7V, Ge: 0.3V
  • ✓ β = IC/IB, α = β/(β+1)
  • ✓ Inverting: Av = -Rf/Rin
  • ✓ Non-inverting: Av = 1 + Rf/Rin
  • ✓ FWR: Vdc = 0.636Vm
  • ✓ Buck: Vout = DVin
  • ✓ De Morgan: (AB)' = A'+B'

Critical Concepts

  • ✓ N-type: electrons, P-type: holes
  • ✓ CE: high gain, 180° phase shift
  • ✓ CC: unity gain, buffer
  • ✓ NAND/NOR: universal gates
  • ✓ SCR: latching, gate-triggered
  • ✓ D flip-flop: data latch
  • ✓ Enhancement MOSFET: normally OFF